REU - Electricity Infrastructure for Smart Cities

Optimization of Solar Battery and Panel System in Denver, Colorado

Celina Wilkerson

Graduate Student Mentors: Zohreh Hosseini and Dr. Hafez Bazrafshan Faculty Mentors: Dr. Amin Khodaei and Dr. David Gao

Problem Statement

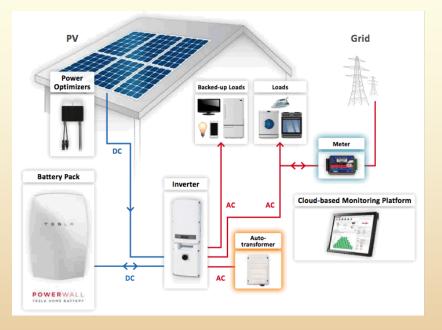


Fig. 1 Solar Panel and Battery System

- Problem: A person would like to go solar but does not know the cost.
- Solution: Optimize the size of a solar panel and battery to determine the most beneficial solution for a home.

Power and Energy Capacity

- Power=kW
 - Instantaneous output
 - Amount of electricity generated or discharged
- Energy=kWh
 - o "volume of electricity"
 - Power over time
- Capacity
 - Measure of battery's potential to generate power and store energy
- Batteries intended to either maximize power or energy rating
- Examples
 - Primary use to regulate frequency (charge and discharge many times over short duration of time)
 - System designed with high power rating
 - Primary use to provide peak-shifting or backup power (discharge over long period of time)
 - System designed with high energy rating

Solar Capacity Factor

- Ratio of energy generated over time period divided by installed capacity
- Changes depending on location
- Colorado=high solar potential w/ 300+ days of sun
- Example:
 - System generates 20,500 kWh per year
 - Peak capacity=10kW
 - o 24*365*10=87,600
 - Capacity factor=20,500/87,600*100=23%
- Ranges from 10-25%

Xcel Energy Rewards Program

- Small Rewards Program
 - 0.5kW-25kW systems
 - 2MW capacity allocated per month (24MW for year)
 - \$0.005/kWh
 - \$10 max paid back per month
 - \$120 max per year
- Medium Rewards Program
 - 25.01kW-500kW systems
 - 6MW capacity allocated per quarter—3 months—(24MW for year)
 - \$0.0375/kWh
 - \$225 max paid back per quarter (\$75 per month)
 - \$900 max per year
- Large Rewards Program
 - 500kW+ systems
 - Accepting proposals
 - Capped at 120% of customer annual load
 - Up to 14MW
- All Payments made in REC
 - Renewable energy credit

Average Cost of Solar Panel Installation in Denver

System size*	Average cost per watt	Roof space required	Average cost (before tax credit)	Average cost (after tax credit)
4 kW	\$4.18	267 sq/ft	\$16,733	\$11,713
5 kW	\$4.06	333 sq/ft	\$20,305	\$14,214
6 kW	\$3.90	400 sq/ft	\$23,427	\$16,399
8 kW	\$3.87	533 sq/ft	\$30,927	\$21,649
10 kW	\$3.79	667 sq/ft	\$37,859	\$26,502
12 kW	\$3.66	800 sq/ft	\$43,926	\$30,748
20 kW	\$3.48	1,333 sq/ft	\$69,592	\$48,714

Fig. 1 Differing Solar Panel System Size Installation Costs

Calculations

System Size (kW)		Average Cost After Tax Credit (\$)		Xcel Energy Small Rewards (\$/kWh)		Average I	Average Residential Electricity Rate (\$/kWh)			
4			11,713			0.005			11.46	
5	Typical		14,214]	Max (\$/mo)			Usage (kWh/month)	
6			16,399			10			706	
8			21,649			Max (\$/yr)			Electricity Bill (\$)	
10			26,502			120			81	
12			30,748					5kW Sola	r System Covered Cost	Monthly (\$)
20			48,714						73.0002	
Money earn	ed monthly w/	/ 5kW (\$)	Money Lost M	onthly (\$)	Payback Time	(years) <mark>A</mark>	Assumes 100% e	nergy used is so	olar (5kW system)	
	3.53		6.47		14.0128					
	Yearly		Yearl	у	If all storage	used				
	42.36		77.64	Ł	13.0165					
Money earn	ed monthly w/	/ 5kW (\$)	Out of Pocket I	Expense (\$)	Payback Time	(years)	Average 5kW S	olar Generatior	n Monthly (kWh)	
	3.185		7.999	8	15.5476			637		
	Yearly		Yearl	у			Average 5kW	Solar Generatio	n Yearly (kWh)	
	38.22		95.99	76				7639		

Fig. 2 Payback Time in Years for Three Cases

Calculations

Money earned monthly w/ System (\$) System Size (kW)		Cost After Tax Credit (\$)	Residential Electricity Rate (\$/kWh)		
	0.45625 5		14,000	10	
	Yearly	Capacity Factor		Usage (kWh/month)	
	5.475	25%		750	
		Solar Energy (kWh/year)		Electricity Bill (\$)	
		10950		75	
		Solar Panel (kWh/month) 912.5			
		Solar Panel (kWh/day)			
		1.25			
5kW	Solar Generation		Price (\$)	Payback Time (years)	
	1000		6700	21	
5kW Sc	lar System Covere	d Cost Monthly (\$)	Supporting Hardware (\$)		
	91.25		1100		
			Installation Cost (\$)		
			1000		
			Battery (kW)		
			15		
			Battery Energy (kWh/year)		
			21900		
			Solar Stored (kWh/year)		
			1950		

Fig. 3 Payback Time in Years Including Solar Battery

Sensitivity Analysis

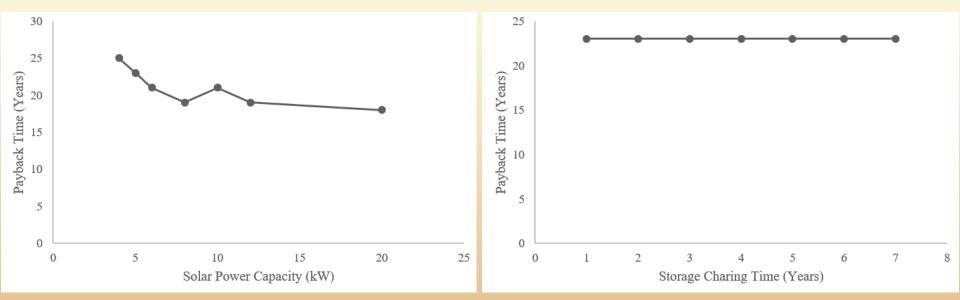


Fig. 4 Sensitivity analysis of payback time versus solar power capacity

Fig. 5 Sensitivity analysis of payback time versus storage charging time

Sensitivity Analysis

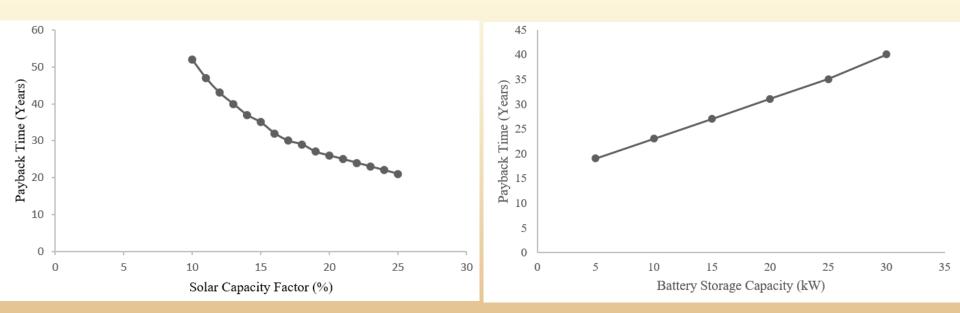


Fig. 6 Sensitivity analysis of payback time versus solar capacity factor

Fig. 7 Sensitivity analysis of payback time versus battery storage capacity

Variables

Table I Variable Constraints

Variable	Mathematical Notation	Lower Bound (lb)	Upper Bound (ub)
AC Size of PV System	S_{PV}	0	20kW
Power of PV	P_{PV}	0	Inf
PV Energy Produced	E_{PV}	0	39,770kWh
Battery System Size	S_B	0	7kW
Battery Energy Produced	E_B	-10,220kWh	10,220kWh
Grid Energy Bought	E_{G}	0	Inf
Money Earned	М	-inf	Inf
Cost of PV	C_{PV}	-inf	Inf
Cost of Battery	\mathcal{C}_B	-inf	Inf
Cost of Grid	C_G	-inf	Inf

Parameters

Table II Parameter Constraints

Parameter	Mathematical Notation	Quantity	Units
Price of Electricity https://www.electricitylocal.com/states/colorado/	R	11.46	Cents per Kilowatt Hours (¢/kWh)
Efficiency of PV https://news.energysage.com/what-are-the-most-efficient-solar-panels-on-the-market/	ε	19.41	Percent (%)
Capacity Factor https://euanmearns.com/solar-pv-capacity-factors-in-the-us-the-eia-data/	F	22.7	Percent (%)
Energy Consumed Monthly (Yearly) https://www.electricitylocal.com/states/colorado/	U	8472	Kilowatt Hours (kWh)
Hours of Battery Utilized	Н	4	Hours (h)
Price of PV System http://www.freecleansolar.com/Panasonic-Solar-Panel-HIT-N320K-VBHN320KA03- p/vbhn320ka03.htm?gclid=CjwKCAjw67XpBRBqEiwA5RCocbjlKr9KEHjMMrQtd36t sanNZhU0MXo3p39EFZ2y5-g-Mp4e2dpDABoC2xwQAvD_BwE	R _{PV}	1090	Dollars per Kilowatt (\$/kW)
Price of Battery https://www.tesla.com/powerwall	C_B	6700	Dollars (\$)
Excel Energy Rewards https://www.xcelenergy.com/programs_and_rebates/residential_programs_and_rebates/r enewable_energy_options_residential/solar/available_solar_options/on_your_home_or_i n_your_yard/solar_rewards_for_residences	X	0.005	Dollars (\$)

Mathematical Problem

Minimize Cpv+Cb+Cg-M

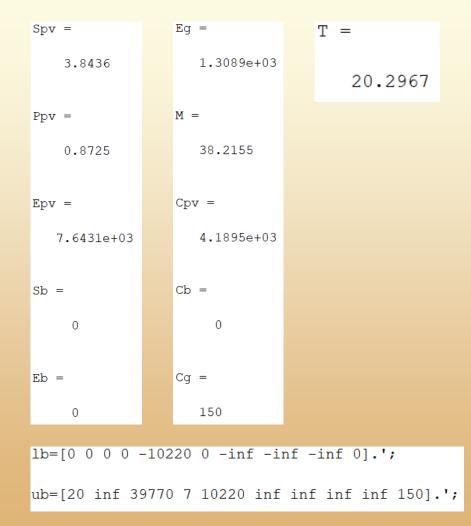
Subject to:
$$P_{PV} - F \cdot S_{PV} = 0$$
 [Spv
 $E_{PV} - P_{PV} \cdot 8760 = 0$ Ppv
 $E_{PV} + E_G + E_B = U$ Sb
 $E_B - S_B \cdot H \cdot 365 = 0$ $x = Eb$ lb $\leq x \leq ub$
 $E_G - R \cdot E_G = 0$ M
 $M - E_{PV} \cdot X = 0$ Cpv
 $C_{PV} - R_{PV} * S_{PV} = 0$ Cb
 $C_B - R_B * S_B = 0$

Parameters

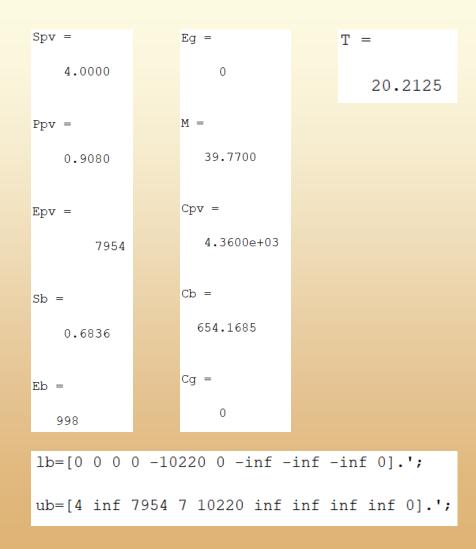
- Monthly Usage=706kWh
- Rpv=\$1090/kW
- Rb=\$957/kW

F=0.227;	%parameter	inputs
R=0.1146;		
U=8952;		
H=4;		
Rpv=1090;		
Rb=957;		
X=0.005;		

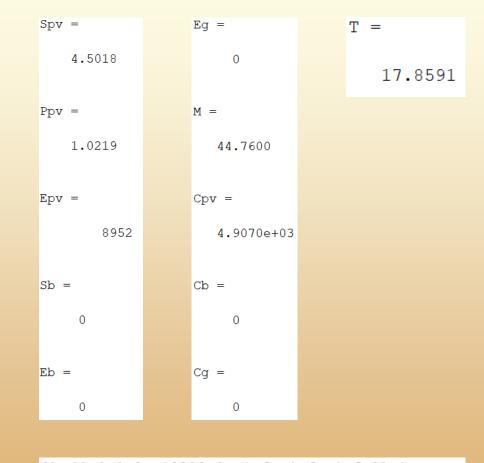
Output


• Objective function • Variable output • Time in years x=linprog(f,A,b,Aeq,beq,lb,ub); %optimization Spv=x(1) %stating variables Ppv=x(2)Epv = x(3)Sb=x(4)Eb=x(5)Eg = x(6)M=x(7)Cpv = x(8)Cb=x(9)Cg = x(10)

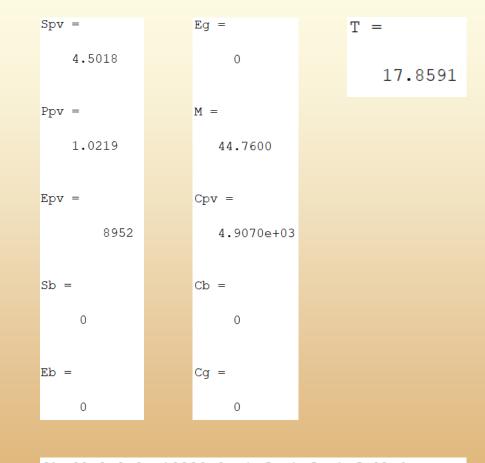
T=(Cb+Cg+Cpv+14214)/(M+R*Epv) %payback time in years


- **Optimal Solution:**
 - No solar panel or battery needed
 - Grid energy bought to fulfill load demand
- No bounds on grid energy bought •
- No payback time in years b/c no • solar panel or battery needed

Spv =		Eg =		т =	
0		8.9520e+03		Inf	
Ppv =		M =			
0		0			
Epv =		Cpv =			
0		0			
Sb =		Cb =			
0		0			
Eb =		Cg =			
0		1.0259e+03			
lb=[0 0	0 0 -10	0220 0 -inf -	-inf -	inf -inf]	.';
ub=[20 i	inf 397 ⁻	70 7 10220 ir	nf inf	inf inf	inf].';


- Optimal Solution:
 - Grid+Solar Panel System
 - 4kW Solar Panel System Size
- Constraints
 - \$150 cap on grid energy bought
- ~20 years payback time

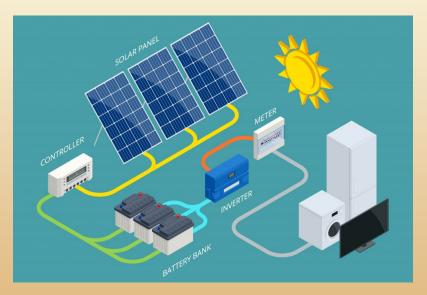
- Optimal Solution:
 - Solar Panel+Battery
 - 4kW solar panel system size
 - 1kW solar battery size
- Constraints:
 - \$0 bought from grid
 - Max 4kW solar panel system size
- ~20 years payback time



- Optimal Solution:
 - 5kW solar panel system size
- Constraints:
 - \$0 bought from grid
- ~18 years payback time

lb=[0 0 0 0 -10220 0 -inf -inf -inf 0].'; ub=[20 inf 39770 7 10220 inf inf inf inf 0].';

- Optimal Solution:
 - 5kW solar panel system size
- Constraints:
 - \$0 bought from grid
- ~18 years payback time


lb=[0 0 0 0 -10220 0 -inf -inf -inf 0].'; ub=[20 inf 39770 7 10220 inf inf inf inf 0].';

Conclusion

- If grid is included, 4kW solar panel system is the most practical
- A battery is not cost effective
- No 1kW solar battery
- In general, it is cheaper to buy from the grid b/c of the payback time required for the solar panel/battery

Future Research

- Types of solar battery storage
- Types of battery materials
- Climates around United States
- Large-scale use
 - Solar farms

Main References

Electricity Local, "Colorado Electricity Rates & Consumption," *Energy Matters*, 2019. Available:

https://www.electricitylocal.com/states/colorado/

energysage, "What are the most efficient solar panels on the market? Solar panel efficiency explained," *energysage*, 2019. Available: https://news.energysage.com/what-are-the-most-efficient-solar-panels-on-the-market/

energysage "What does a 5,000 watt (5kW) solar system cost in the U.S. in 2019?," *energysage.*, January 2019. Available: https://news.energysage.com/5kw-solar-systems-compare-prices-installers/

Jeff, "How to Estimate Solar Charge Time," Voltaic Systems, November 2017. Available:

https://www.voltaicsystems.com/blog/estimating-battery-charge-time-from-solar/

Joyce McLaren "Batteries 101 Series: How To Talk About Batteries and Power-To-Energy Ratios," *NREL*, April 2016. Available: https://www.nrel.gov/state-local-tribal/blog/posts/batteries-101-series-how-to-talk-about-batteries-and-power-to-energy-ratios.html C.S. Lai and M.D. McCulloch "Levelized Cost of Energy for PV and Grid Scale Energy Storage Systems," *Elsevier Applied Energy*, September 2016.

A. S. Mundada, K. K. Shah, and J. M. Pearce "Levelized Cost of Electricity for Solar Photovoltaic, Battery, and Cogen Hybrid Systems," *Elsevier Applied Energy.*, 2016.

A.S. Mundada, K.K. Shah, J.M. Pearce "Performance of US Hybrid Distributed Energy Systems: Solar Photovoltaic, Battery, and Combined Heat and Power," *Elsevier Applied Energy*, November 2015.

Ozgur "What is capacity factor and how do solar and wind energy compare?," SUN Metrix, July 2015. Available:

https://sunmetrix.com/what-is-capacity-factor-and-how-does-solar-energy-compare/

Solar Choice "Kilowatts vs kilowatt-hours in solar power & battery storage: Power, energy or capacity?," *Solar Choice*, April 2019. Available: https://www.solarchoice.net.au/blog/kW-vs-kWh-solar-battery-power-energy-capacity

Solar Reviews "How much do solar panels cost for the average house in Colorado in 2019?," *Solar Reviews.*, 2019. Available: https://www.solarreviews.com/solar-panels/solar-panel-cost/cost-of-solar-panels-in-colorado

Roger Andrews, "Solar PV capacity factors in the US—the EIA data," *Electricity Local*, September 2016. Available:

https://euanmearns.com/solar-pv-capacity-factors-in-the-us-the-eia-data/

U.S. Energy Information Administration "Colorado State Energy Profile," *U.S. Energy Information Administration*, January 2019. Available: https://www.eia.gov/state/print.php?sid=CO

Wholesale Solar, "How much energy storage do you need?," Wholesale Solar, 2019. Available:

https://www.wholesalesolar.com/solar-information/battery-bank-sizing

Xcel Energy, "Solar*Rewards," Xcel Energy, May 2019. Available:

https://www.xcelenergy.com/programs_and_rebates/residential_programs_and_rebates/renewable_energy_options_residential/solar /available_solar_options/on_your_home_or_in_your_yard/solar_rewards_for_residences